Casus irreducibilis

Author: David Yao

May 18, 2016

Abstract algebra

Theorem 0.1 (casus irreducibilis) If \(p(x) \in \mathbb{Q}[x] \) is an irreducible cubic polynomial with three real roots, then it is impossible to obtain any of the roots with only real radicals.

Lemma 0.2 Suppose \(F \) is a subfield of \(\mathbb{R} \) and let \(a \) be an element of \(F \). Let \(p \) be prime and let \(\alpha = \sqrt[p]{a} \) be the \(p \)th real root of \(a \). Then \([F(\alpha) : F] = 1 \) or \(p \).

Proof of Lemma 0.2 Let \(m_\alpha \) be the minimal polynomial of \(\alpha \) over \(F \), and suppose its degree is \(d \leq p \). Since \(m_\alpha \) divides \(x^p - a \), all its roots are \(p \)th roots of \(a \), in the form of \(\alpha \zeta_p^j \) for some integer \(j \), where \(\zeta_p \) is the \(p \)th root of unity.

The constant term of \(m_\alpha \) lies in \(F \) and is the product of all its roots, so it is \(\alpha^d \zeta_p^k \) for some integer \(k \), as products of \(p \)th roots of unity is still a \(p \)th root of unity. Therefore \(\alpha^d \zeta_p^k \) is real. Since \(\alpha^d \) is real, \(\zeta_p^k \) is real, so \(\zeta_p^k = \pm 1 \).

Therefore \(\alpha^d \in F, \exists a, b \in \mathbb{Z} \) s.t. \(ad + bp = (d, p) \) by Euclid’s Algorithm. So \(\alpha^{(d, p)} = (\alpha^d)^a (\alpha^p)^b \in F \).

Proof of casus irreducibilis: Let \(p(x) \) be an irreducible polynomial in \(\mathbb{Q}[x] \) with three real roots \(a, b, c \). Consider the discriminant \(D \) of \(p(x) \).

\[
D = (a - b)^2(a - c)^2(b - c)^2
\]

Since we are in \(\mathbb{C} \), \(p(x) \) is separable and \(a, b, c \) are all distinct. Since they are all real, \(D > 0 \), and it has a real square root \(\sqrt{D} \in \mathbb{R} \). \(p(x) \) is still irreducible in \(Q(\sqrt{D}) \) because a quadratic extension cannot contain any root of \(p \), an irreducible cubic whose roots have degree 3 over \(Q \). Now, since \(D \) is a perfect square in \(Q(\sqrt{D}) \), the Galois group of \(p(x) \) over \(Q(\sqrt{D}) \) is inside \(A_3 \), so the splitting field of \(p(x) \) over \(Q(\sqrt{D}) \) is at most degree 3. In other words, adjoining any root to \(Q(\sqrt{D}) \) will give all three roots.

By way of contradiction, suppose one of the roots is expressible in real radicals, then it lives inside a real radical extension of \(Q \), and consequently lives inside a real radical extension of \(Q(\sqrt{D}) \). By the previous discussion, all three roots are in that real radical extension of \(Q(\sqrt{D}) \). We hence have the tower

\[
\mathbb{Q} = K_0 \subset K_1 = \mathbb{Q}(\sqrt{D}) \subset K_2 \subset \cdots \subset K_s
\]

where each \(K_i \subset \mathbb{R} \) and \(K_{i+1} = K_i(\sqrt{\alpha_i}) \) for some \(\alpha_i \in K_i \), and \(a, b, c \in K_s \).

Notice that \(s \geq 2 \) because \(p(x) \) is irreducible over \(K_1 \), per previous discussion.

Notice also that for a simple radical extension \(F(\sqrt[p]{\alpha})/F \), it can be further broken down into two simple radical extensions \(F(\sqrt[p]{\alpha})/F(\sqrt[p]{\alpha})/F \). Therefore WLOG, we can assume that \(K_{i+1} = K_i(\sqrt[p]{\alpha}) \) for some prime \(p_i \). By Lemma 0.2 we know that \([K_{i+1} : K_i] = p_i \).

WLOG, suppose that \(s \) is chosen so that \(K_s \) is the first field in the tower to split \(p(x) \), then by previous discussion, \(K_{s-1} \) does not contain any of the roots \(a, b, c \).

Since \(K_{s-1} \) contains no root of \(p(x) \), \(p(x) \) is irreducible over \(K_{s-1} \). Since \(p(x) \) splits in \(K_s \), \([K_s : K_{s-1}] \) is a multiple of 3. However, this is a prime degree extension by assumption so \([K_s : K_{s-1}] = 3 = p_{s-1} \), i.e. \(K_s = K_{s-1}(a, b, c) \) is the splitting field of \(p(x) \) over \(K_{s-1} \), hence it is a Galois extension. By construction, \(K_s = K_{s-1}(\sqrt[p]{\alpha_{s-1}}) \), and \(x^3 - \alpha_{s-1} \) is irreducible over \(K_{s-1} \). As a Galois extension, \(K_s \) contains a real third root of \(\alpha_{s-1} \), call it \(\beta \). It must contain the other two third roots as well, namely \(\beta \zeta_3 \) and \(\beta \zeta_3^2 \). So \(\zeta_3 \in K_s \), which contradicts \(K_s \subset \mathbb{R} \).

References